In mathematics, an orthostochastic matrix is a doubly stochastic matrix whose entries are the square of the absolute value of some orthogonal matrix.
The detailed definition is as follows. An square matrix B of size n is doubly stochastic (or bistochastic) if all its rows and columns sum to 1 and all its entries are nonnegative real numbers, each of whose rows and columns sums to 1. It is orthostochastic if there exists an orthogonal matrix O such that
All 2-by-2 doubly stochastic matrices are orthostochastic (and also unistochastic) since for any
we find the corresponding orthogonal matrix
with such that
For larger n the sets of bistochastic matrices includes the set of unistochastic matrices, which includes the set of orthostochastic matrices and these inclusion relations are proper.